3 research outputs found

    Multiple-Tree Push-based Overlay Streaming

    Full text link
    Multiple-Tree Overlay Streaming has attracted a great amount of attention from researchers in the past years. Multiple-tree streaming is a promising alternative to single-tree streaming in terms of node dynamics and load balancing, among others, which in turn addresses the perceived video quality by the streaming user on node dynamics or when heterogeneous nodes join the network. This article presents a comprehensive survey of the different aproaches and techniques used in this research area. In this paper we identify node-disjointness as the property most approaches aim to achieve. We also present an alternative technique which does not try to achieve this but does local optimizations aiming global optimizations. Thus, we identify this property as not being absolute necessary for creating robust and heterogeneous multi-tree overlays. We identify two main design goals: robustness and support for heterogeneity, and classify existing approaches into these categories as their main focus

    TopT: Supporting Flash Crowd Events in Hybrid Overlay-based Live Streaming

    No full text
    Recent studies show that an increasing number of over-the-top live streams is delivered over the Internet. For the delivery of those streams, the dynamically changing and potentially large number of users imposes a major challenge. Flash crowds, where the number of users multiplies or significantly drops in a very small time frame, can cause serious degradations in the streaming performance. Due to the missing support for global network-layer multicast, overlay-based approaches have been broadly studied, showing that, with relaxed time constraints, they can scale well with the number of users. Yet, to support flash crowds, scaling has to happen quickly to keep up also with rapidly changing populations. Only a few approaches exist that focus on this aspect by influencing the streaming topology and, so far, it is not clear if and how these mechanisms can be applied to state-of-the-art hybrid streaming systems. Therefore, in this paper, T OP T is proposed, integrating new as well as existing mechanisms in a common framework. The evaluation shows that the streaming topology, indeed, plays a major role during flash crowds. The lightweight and decentralized tree-forming and topology optimization mechanisms of T OP T, combined with tracker extensions to attach new peers in batches, greatly help improving the streaming performance in terms of reduced playback interruptions by more than 60% and slight reduction in communication overhead at an acceptable increase in average startup delays by 24%. TopT: Supporting Flash Crowd Events in Hybrid Overlay-based Live Streaming - ResearchGate. Available from: http://www.researchgate.net/publication/275340665_TopT_Supporting_Flash_Crowd_Events_in_Hybrid_Overlay-based_Live_Streaming [accessed Jul 23, 2015]
    corecore